Аппаратная коррекция ошибок (FEC) в сетях стандарта nanoNET (IEEE )

Содержание

Аппаратная коррекция ошибок (FEC) в сетях стандарта nanoNET (IEEE 802.15.4a)

В качестве примера можно привести повсеместно распространенные технологии Ethernet+TCP/IP. В случае беспроводных сетей разработчики наряду с теми или иными способами обнаружения ошибок дополнительно применяют средства их исправления.

Общая идея как обнаружения, так и исправления ошибок основывается на использовании избыточных кодов. Простейший пример — это введение так называемого «бита четности» — такой прием позволяет обнаружить единичную ошибку.

На передающей стороне значение бита четности определяется следующим правилом: при четном количестве единиц в блоке информации проверочный бит должен быть равен нулю, в противном случае — единице. Таким образом, общее количество единиц в блоке (включая избыточный бит) должно быть четным. Если на приемной стороне количество единиц оказалось нечетным, этот блок считается поврежденным. Добавление одного бита фактически увеличивает число возможных кодовых слов в два раза, но при этом только половина из них является допустимо, разрешенными, а другая половина в силу обозначенных правил невозможна, запрещена.

Декодер, встретив какую-либо комбинацию битов, которая входит в число невозможных, делает вывод, что кодовое слово было передано с ошибкой. Более сложные схемы основаны на аналогичной идее, но подразумевают большее количество добавочных битов и более сложные правила формирования их комбинаций; при этом эти правила дают возможность на приемной стороне определить, какой именно бит (или биты) были повреждены.

Поскольку применение рассматриваемых методов обнаружения и/или коррекции ошибок связано с передачей дополнительных проверочных битов, то совершенно ясно, что применение средств такого рода оправданно именно в ситуациях, когда велика вероятность сбоя при передаче — в противном случае введение дополнительных данных приведет лишь к уменьшению полезной пропускной способности канала передачи.

Общая теория помехоустойчивых кодов (кодов с исправлением ошибок) изложена в книге [1]. В англоязычной литературе схемы кодирования с избыточностью с целью исправления ошибок называются FEC (сокращение от Forward Error Correction). С общими сведениями о способах обнаружения и коррекции ошибок можно ознакомиться, например, в RFC2354 [2].

Коррекция ошибок в nanoNET

В соответствии с описанием стандарта nanoNET [3] передаваемые данные подвергаются многоступенчатой побитовой обработке (рис. 1).

Битовые преобразования в трансмиттере и ресивере

Рис. 1. Битовые преобразования в трансмиттере и ресивере

После формирования кадра (составления заголовков и записи данных в трансивер) и получения команды начать передачу вычисляются контрольные суммы заголовков кадра CRC1 и поля данных CRC2. Затем (при включении соответствующей опции) поле данных и контрольная сумма CRC2 шифруются с помощью 128-битного ключа. После этого весь кадр подвергается так называемому скремблированию (перемешиванию битов) — это делается для минимизации вероятности появления длинных цепочек нулей и повышения надежности передачи. Далее битовая последовательность проходит через описанную ниже схему помехоустойчивого кодирования FEC и только потом преобразуется в чирп-сигналы (импульсы длительностью 1 мкс с наполнением возрастающей и (или) убывающей частотой).

На приемной стороне процесс происходит в обратном порядке, то есть сначала из помехоустойчивого кода получаются информационные биты, возможно, с исправлением ошибок, затем производится процедура, обратная перемешиванию, расшифровка и проверка контрольных сумм. При этом контрольное суммирование и перемешивание являются обязательными стадиями (скремблирование рекомендовано к применению), в то время как шифрование и помехоустойчивое кодирование таковыми не являются (помечены на рис. 1 серым фоном).

Отметим, что трансиверы nanoNET можно конфигурировать на прием или передачу как с использованием корректирующих кодов, так и без их использования. При этом в передаваемом кадре не содержится никаких сведений о том, подвергался ли он такому кодированию FEC или нет. Это означает, что для того чтобы передатчик и приемник, выражаясь образно, «разговаривали на одном языке», нужно, чтобы они были одинаковым образом сконфигурированы в плане использования или неиспользования FEC.

Для кодирования FEC с возможностью исправления ошибок передачи трансиверы nanoNET используют классический код Хэмминга (7,4), то есть к каждой четверке информационных битов добавляется 3 проверочных, общая длина кодового слова равна 7. Из теории корректирующих кодов известно, что такой код имеет минимальное кодовое расстояние 3, и, следовательно, приемник способен либо исправить одиночную ошибку, либо обнаружить двойную. Особенностью реализации помехоустойчивого кодирования в передатчиках рассматриваемого стандарта является совместное кодирование двух соседних полубайтов за счет перемежения битов кодовых слов, полученных при кодировании этих двух полубайтов: сначала кодируется один полубайт, то есть из комбинации битов (b0, b1, b2, b3) получается кодовое слово:

(символами bi обозначены информационные биты, а символами Pk – проверочные биты), затем кодируется другой полубайт, получается кодовое слово:

далее эти два кодовых слова перемежаются следующим образом:

Это позволяет исправлять двойные ошибки в результирующем 14-разрядном кодовом слове даже в том случае, если эти ошибки произошли в соседних битах. Данное свойство особенно важно при использовании четверичной системы счисления, которая используется в nanoNET для кодирования одного символа данных двумя битами и позволяет передавать данные на скорости 2 Мбит/с.

Регистры модулей nanoPAN, связанные с FEC

FEC, CRC2 type, Symbols and Modulation (адрес 0х39 — регистр, отвечающий за включение FEC, тип контрольной суммы CRC2, систему модуляции и длину символа):

TxRxMode — выбор режима (Auto или Transparent, по умолчанию TxRxMode=0=Auto).

TxRxFwdEc — включение или выключение FEC, по умолчанию TxRxFwdEc=0, FEC отключен.

TxRxCrcType — указание типа контрольной суммы данных.

TxRxData Rate – выбор битовой скорости передачи (500 или 1000 Ksps, по умолчанию TxRxDataRate=0, 1000 Ksps).

TxRxMod System — выбор способа модуляции (двоичная или четверичная, по умолчанию TxRxModSystem=0, двоичная).

Receive FEC Single Bit Error Count (адреса 0х57 и 0х58 — регистры, в которых содержится число единичных ошибок, исправленных в предыдущем принятом кадре).

RxFec1BitErr — 15-разрядное число единичных ошибок, встретившихся в предыдущем принятом кадре. Этот регистр содержит корректную информацию только в случае, если бит TxRxFwdEc в регистре 0х39 выставлен в значение 1).

Регулирование амплитуды выходного сигнала

Для сбора статистики по функционированию режима FEC использовалась возможность управления силой выходного сигнала в трансиверах nanoPAN. Для этого перед стартом передачи необходимо было занести число от 0 до 63 в младшие шесть байтов регистров RfTxOutputPower с адресами 0x2A и 0x2B (первый соответствует управлению силой сигнала для кадров с данными, второй предназначен для служебных кадров). В документации на NA1TR8 [4] приводится зависимость выходной мощности сигнала от значения, записанного в указанном регистре (рис. 2).

Зависимость мощности выходного сигнала от значения, записанного в регистр RfTxOutputPower

Рис. 2. Зависимость мощности выходного сигнала от значения, записанного в регистр RfTxOutputPower

Таким образом, трансиверы поддерживают 19 градаций мощности сигнала, которые соответствуют значениям (0, 1, 2, 3, 4, 5, 21, 22, 23, 39, 40, 41, 57, 58, 59, 60, 61, 62, 63) в регистре RfTxOutputPower.

Порядок проведения экспериментов

В предыдущих статьях авторов [5, 6] было описано некоторое количество экспериментов по определению условий и качества радиосвязи с использованием трансиверов nanoNET. На основе программного обеспечения, использовавшегося ранее, для изучения условий применения коррекции ошибок FEC была создана новая версия программы. Она загружалась и исполнялась в микроконтроллерах ATmega32L и управляла работой двух радиомодулей nanoNET по интерфейсу SPI. Также с ее помощью результаты измерений отсылались по com-порту в персональный компьютер.

В начале цикла измерений узел-мастер в течение 10 секунд посылал узлу-слейву кадры длиной 128 байт на максимальной выходной мощности. В журнал работы заносилось как значение общего количества отосланных кадров, так и количество кадров, на которые удаленный узел прислал подтверждение о приеме. Каждый кадр передавался не более чем c тремя ретрансмиссиями, которые автоматически осуществлялись в случае неуспешного приема.

После 10-секундного периода узел-мастер последовательно посылал узлу-слейву кадры, постепенно уменьшая амплитуду сигнала со значения 63 до 0, и фиксировал количество ретрансмиссий. Если счетчик попыток передачи пакета для текущей мощности сигнала равнялся трем, это означало, что пакет так и не был доставлен адресату (узлу-слейву). Пакеты подтверждения о приеме посылались всегда на максимальной мощности (63).

Типичная запись в журнале эксперимента выглядела следующим образом.

FEC off и FEC on — выключение и включение режима коррекции ошибок соответственно.

SENT=3973 — количество отправленных за 10 секунд кадров по 128 байтов (на максимальной мощности сигнала).

OK=3973 — количество переданных пакетов, на которые было получено подтверждение о приеме.

RTC: 000004395914 — временная метка регистрации данных (аппаратная поддержка в трансиверах Nanonet).

Строчка, обозначенная синим цветом на рис. 3, содержит набор цифр, каждая из которых обозначает уровень мощности отправленного информационного кадра. Всего 19 градаций — от 18 (написана только восьмерка, а единица для компактности в записи в журнале опущена) до 0.

Пример записей в журнале о двух последовательных измерениях

Рис. 3. Пример записей в журнале о двух последовательных измерениях

Следующие три (для увеличения достоверности) строки соответствуют сериям отправки кадров с уменьшающейся силой сигнала.

Каждый символ в этих строчках обозначает количество ретрансмиссий, которое потребовалось для подтвержденной передачи. Если их не было, то есть кадр был передан с первой попытки, вставлялся пробел.

Например, в первой серии кадры с уровнем мощности 18, 17, 16 и т. д. до 9 отсылались с первой попытки. А вот при уровне сигнала в 9 условных единиц потребовалась одна дополнительная ретрансмиссия; далее на восьмом уровне мощности две ретрансмиссии, а затем вообще не было зарегистрировано безошибочных передач.

Другими словами, пока сигнал узла-мастера был достаточно сильным (соответствующие значения регистра RfTxOutputPower лежали в диапазоне от 63 до 39), узел-слейв подтверждал прием каждого пакета. Как только уровень мощности стал равным 9, начали появляться проблемы с приемом. А для уровней сигнала от 7 до 0 вообще не было зарегистрировано ни одной успешной передачи.

То есть чем хуже были условия приема-передачи, тем ближе к началу третьей строки возникали цифры 1, 2 и 3.

Пользуясь таким журналом, можно ввести некий новый параметр, характеризующий необходимую (минимальную) амплитуду выходного сигнала, достаточную для успешной передачи в конкретных условиях. Его можно назвать пороговой мощностью между безошибочным и ошибочным приемом. Для приведенного выше примера (первая серия) таким порогом было 9. Чем ниже порог, тем более стабильная была передача при неизменной мощности радиосигнала.

Таким образом, качество радиосвязи в проведенных экспериментах контролировалось двумя параметрами: процентом безошибочных передач для кадров, отосланных на максимальной мощности, и усредненной по трем значениям пороговой мощностью успешной передачи.

Результаты экспериментов

Рис. 4. Процент безошибочных передач кадров длиной 128 байтов в зависимости от порогового уровня выходного сигнала на передающей стороне и включения или выключения коррекции ошибок FEC

При построении сетей датчиков и других распределенных систем одним из актуальных вопросов оказывается управление энергопотреблением. Главным инструментом в этом случае является варьирование мощности выходного сигнала (чем больше его амплитуда и потребляемый ток, тем больше зона уверенного приема). Кроме этого, намеренное уменьшение мощности иногда используется для снижения вероятности возникновения коллизий и сетевых проблем типа «скрытый узел».

Для организации надежной радиосвязи по возможности без ретрансмиссий необходимо обеспечить уровень потерь не выше 5–10%. Тогда для осуществления передачи потребуется максимум одна ретрансмиссия.

Поэтому можно утверждать, что после тестирования канала радиосвязи и оценки пороговой мощности независимо от того, включена коррекция FEC или нет, если трансиверы связываются между собой в условиях с пороговыми уровнями сигнала не выше 10 в условных единицах, это почти гарантирует малоошибочную передачу. В случаях осуществления связи с уровнями сигнала 15–17 процент успешных передач резко падает, а при уровне 18 связь крайне нестабильная (рис. 4).

Использование тестирования линий таким способом может помочь при проектировании маршрутов в сложных радиосетях типа mesh (ячеистая).

Количество безошибочных передач кадров за 10 секунд (левая ось) и соответствующий ему пороговый уровень выходного сигнала на передающей стороне (правая ось) при включенной и выключенной коррекции ошибок FEC для 64 точек измерений

Рис. 5. Количество безошибочных передач кадров за 10 секунд (левая ось) и соответствующий ему пороговый уровень выходного сигнала на передающей стороне (правая ось) при включенной и выключенной коррекции ошибок FEC для 64 точек измерений

После набора данных они были отсортированы по убыванию значений количества безошибочно переданных кадров для режима с выключенной коррекцией ошибок FEC (монотонно убывающая кривая из сплошных квадратов на рис. 5, левая ось). Ей соответствует почти монотонно возрастающая линия с полыми квадратами. При пороговых уровнях мощности до 10 (правая ось для полых квадратов), уровень безошибочных передач достаточно высок, а уже после 13-й точки по горизонтальной оси начинает снижаться.

Подобная картина наблюдается и для кривых с ромбами (включенный FEC). До 33-й точки количество успешных передач максимально, тогда как с увеличением пороговой мощности выше 10 процент потерь также увеличивается. Разница в максимальных значениях количества отосланных кадров за 10 секунд для включенного и выключенного режима коррекции ошибок составляет примерно 40%, что объясняется увеличением времени передачи из-за введенных в поток дополнительных битов, обеспечивающих избыточность. Другими словами, при включении опции FEC скорость передачи падает примерно в 1,4 раза, что, однако, резко повышает надежность связи и, соответственно, увеличивает зону уверенного приема. При сравнении значений двух кривых с полыми квадратами и ромбами можно отметить, что при одних и тех же условиях (для одной точки на графике) кривая с квадратами находится выше, в среднем, примерно на 4 деления по правой шкале. Это говорит о том, что благодаря коррекции ошибок можно из более слабого физического входного сигнала «добыть» информационную составляющую без использования дополнительных аппаратных усилителей и средств радиочастотной фильтрации.

Приняв во внимание график (рис. 6), полученный в ходе экспериментов [6], можно заметить, что уменьшение пороговой мощности, достаточной для установления связи, на 4 единицы примерно соответствует 60 метрам увеличения максимального расстояния между узлами, что предс тавляется очень серьезной цифрой.

Зависимость минимального уровня мощности (в соответствии со значением регистра RfTxOutputPower)

Рис. 6. Зависимость минимального уровня мощности (в соответствии со значением регистра RfTxOutputPower)

Заключение

Как уже было показано, введение аппаратной коррекции ошибок практически всегда позволяет достичь более устойчивой связи. «Платой» за это является уменьшение пропускной способности радиоканала.

В заключение необходимо отметить, что включение опции FEС не избавляет от ошибок, оно лишь помогает некоторые из них исправить. Даже если FEC-декодер вследствие случайности помех не определит наличие ошибки (например, строенная, счетверенная), то это почти наверняка будет определено на приемной стороне при CRC-декодировании.

Авторы благодарят Д. А. Екимова (Петрозаводский государственный университет) за высказанные критические замечания.

Данное исследование проведено в рамках проекта «Научно-образовательный центр по фундаментальным проблемам приложений физики низкотемпературной плазмы» (RUX0-013-PZ-06), поддерживаемого Министерством образования и науки РФ, Американским фондом гражданских исследований и развития (CRDF) и Правительством Республики Карелия, а также частично финансировалось Техническим Научно-исследовательским Центром Финляндии (VTT) в рамках договорных работ.

Dvb t2 скорость потока

DVB-T2 (англ. Digital Video Broadcasting — Second Generation Terrestrial ) — европейский стандарт эфирного цифрового телевидения второго поколения из группы стандартов DVB. По сравнению со стандартом первого поколения — DVB-T, DVB-T2 призван увеличить на 30—50 % ёмкость сетей, сохраняя основную инфраструктуру и частотные ресурсы.

Содержание

Техническое описание [ править | править код ]

DVB-Т2 принципиально отличается от DVB-T как архитектурой системного уровня (МАС-уровня — Media Access Control), так и особенностями физического уровня, вследствие чего приёмники DVB-T несовместимы с DVB-T2.

Для DVB-T2 были разработаны следующие характеристики:

Сравнение DVB-T и DVB-T2 [ править | править код ]

Максимальная скорость передачи данных при ширине полосы 8 МГц, 32K поднесущих, с защитным интервалом 1/128, схема размещения поднесущих PP7: [2]

Модуляция Скорость кода Максимальная
скорость цифрового
потока, Мбит/с
Длина Т2-кадра,
OFDM-символов
Число кодовых
слов в кадре
QPSK 1/2 7,4442731 62 52
3/5 8,9457325
2/3 9,9541201
3/4 11,197922
4/5 11,948651
5/6 12,456553
16-QAM 1/2 15,037432 60 101
3/5 18,07038
2/3 20,107323
3/4 22,619802
4/5 24,136276
5/6 25,162236
64-QAM 1/2 22,481705 46 116
3/5 27,016112
2/3 30,061443
3/4 33,817724
4/5 36,084927
5/6 37,618789
256-QAM 1/2 30,074863 68 229
3/5 36,140759
2/3 40,214645
3/4 45,239604
4/5 48,272552
5/6 50,324472

Структура системы [ править | править код ]

Стандарт DVB-T был предназначен исключительно для передачи транспортного потока MPEG-TS, но в отличие от DVB-T, в DVB-T2 заложена возможность передачи нескольких независимых разных по природе и структуре транспортных потоков. Каждый цифровой поток помещается в свой магистральный поток — так называемый канал физического уровня PLP (англ. Physical Layer Pipe ). Для этого введена функция предварительной обработки входных данных.

Входная предварительная обработка [ править | править код ]

Создание канала физического уровня (PLP), который может содержать один из следующих потоков:

Входная обработка [ править | править код ]

Данные собираются в группы, называемые потоковыми (англ. Baseband ) кадрами (BB-кадры), определяемых параметрами модуляции и кодирования (MODCOD), в версиях «нормальной» или «короткой» длины. Возможна передача одного или нескольких потоков PLP

Однопоточный PLP (режим ‘A’):

Многопоточный PLP (режим ‘B’)

Кодирование и модуляция с битовым перемежением (BICM) [ править | править код ]

Формирование кадра [ править | править код ]

Передаваемый поток организуется в суперкадры, которые состоят из кадров DVB-T2 (до 255) и частей кадра перспективного расширения (FEF). FEF используют для резервирования места для информации, которая может появиться в будущем и передаваться в OFDM.

Генерация OFDM [ править | править код ]

DVB-T2 позволяет предоставлять различные цифровые сервисы и услуги:

В списке представлены все цифровые сервисы и услуги DVB-T2. Многие цифровые сервисы и услуги являются интерактивными.

Приём цифрового сигнала DVB — T2 [ править | править код ]

Приём цифрового сигнала DVB-T2 осуществляется эфирной коллективной или индивидуальной (наружной или комнатной) антенной, подключаемой к различным приёмникам:

Использование [ править | править код ]

Европа [ править | править код ]

Россия [ править | править код ]

14 октября 2019 года Россия полностью перешла на цифровое телевещание в стандарте DVB-T2 [13]

Украина [ править | править код ]

Белоруссия [ править | править код ]

Киргизия [ править | править код ]

В г. Бишкек [24] и на остальной территории республики осуществляется цифровое эфирное вещание в стандарте DVB-T2.

Таджикистан [ править | править код ]

Армения [ править | править код ]

Консорциум DVB (расположен в Европе) разработал технологию DVB-T2, как расширение существующего стандарта DVB-T для обеспечения более эффективного использования частотного ресурса за счет интеграции передовых технологий обработки сигналов. При использовании нового стандарта ожидается до 50% увеличения скорости передачи данных при работе в той же полосе частот.

Основные особенности DVB-T2

Спецификация разработана прежде всего для приема на фиксированные наружные антенны и имеет такие же характеристики частотного спектра, как и у DVB-T, что предполагает возможность обратной совместимости с существующей инфраструктурой вещания.

Как и DVB-T, DVB-T2 использует модуляцию OFDM (ортогональное частотное уплотнение) и предоставляет набор режимов с разным количеством несущих (1k, 2k, 4k, 8k, 16k, 32k, 16k раширенный, 32k расширенный) и созвездиями модуляции (QPSK, 16QAM, 64QAM, 256QAM). Для защиты от ошибок DVB-T2 использует LDPC (проверка на чётность с низкой плотностью) и кодирование BCH (БЧХ — Боуза-Чоудхури-Хоквингхема). Новая техника, известная как повернутые созвездия, была введена для обеспечения дополнительной устойчивости в определенных условиях.

Стандарт DVB-T2 также требует внимательного обслуживания передающего оборудования. В частности в режиме 32k, генерируются высокие пики по мощности и, таким образом, сводится к минимуму эффективность усилителя (или он может даже выйти из строя). Для ограничения этих пиков без потери информации в спецификацию стандарта была введена специальная характеристика, называемая уменьшением PAPR (отношения пиковой мощности к средней).

Сравнение DVB-T2 и DVB-T

DVB-T2 DVB-T
FEC LDPC + BCH CC + RS
Скорость кодирования 1/2, 3/5, 2/3, 3/4, 4/5, 5/6 1/2, 2/3, 3/4, 5/6, 7/8
Созвездие QPSK, 16QAM, 64QAM, 256QAM QPSK, 16QAM, 64QAM
Защитный интервал 1/4, 19/256, 1/8, 19/128, 1/16, 1/32, 1/128 1/4, 1/8, 1/16, 1/32
Размер FFT 1K, 2K, 4K, 8K, 8K ext., 16K, 16K ext., 32K, 32K ext. 2K, 8K
Распределенные пилот-сигналы 1%, 2%, 4%, 8% от общего количества несущих 8% от общего количества несущих
Непрерывные пилот-сигналы 0,35% от общего количества несущих 2,6% от общего количества несущих
Занимаемая полоса частот 1,7; 5; 6; 7; 8; 10 МГц 5; 6; 7; 8 МГц
Максимальная скорость 50,34 Мбит/с 31,66 Мбит/с

Архитектура системы DVB-T2

Основным отличием между системами DVB-T2 от DVB-T является то, что мультиплексор должен быть подключен к T2 шлюзу. Этот T2 шлюз принимает один или несколько мультиплексов, то есть по одному на PLP, от мультиплексора и инкапсулирует их в немодулированные кадры. Далее T2 шлюз посылает этот контент модулятору DVB-T2 с помощью протокола интерфейса модулятора T2-MI.

Структура кадра DVB-T2

DVB-T2 заимствует концепцую PLP (или канала физического уровня), введенную в спецификации DVB-S2. PLP — это физический канал, который может передавать один или несколько сервисов. Каждый PLP может иметь различные скорости передачи данных и параметры защиты от ошибок. Например, можно разделить SD и HD сервисы на разные PLP. Другим примером является стандарт DVB-NGH (New Generation Handheld), который будет основан на возможности использования нескольких PLP для включения вещания мобильного телевидения поверх DVB-T2.

Стандарт DVB-T2 определяет несколько профилей:

При необходимости можно определить тип (1 или 2) для каждого PLP, а затем соединить в T2 кадре PLP разных типов.

T2 кадр начинается с преамбул P1 и P2. Ниже показана структура T2 кадра.

Интерфейс модулятора DVB-T2

T2 шлюз инкапсулирует данные в немодулированный (BaseBand) кадр. Эти BB кадры отправляются на DVB-T2 модулятор с помощью специального протокола интерфейса модулятора DVB-T2 MI, структура которого показана ниже.

Тестирование DVB-T2

Тестирование спецификации началось в Великобритании в июне 2008 года. BBC, вместе с вещательной сетью операторов Arqiva и National Grid Wireless, осуществил первую тестовую передачу в стандарте DVB-T2. В сентябре 2008 года на выставке IBC (Амстердам) на стенде DVB был показан ряд презентаций о последних технологиях, которые отмечали последнии достижения, сделанные консорциумом DVB в сфере цифрового наземного ТВ вещания (DTT). Посетители стенда впервые увидели HD контент, кодированный с помощью H.264, и поставляемый через действующую сквозную систему наземного ТВ вещания, используя технологии DVB-T2.

В первых демонстрациях DVB три HD канала вещались в одном мультиплексе, каждый кодировался со скоростью 11 Мбит/с последней версией кодера H.264. Сигнал декодировался последними разработанными BBC демодулятором и декодером H.264, а затем показывался на HD мониторе.

На второй презентации ENENSYS Technologies, NXP Semiconductors и Pace были отмечены за самые надежные характеристики оборудования DVB-T2. Целью этой сквозной демонстрации было показать, как стандарт позволяет обрабатывать вводимые шумы и интерференцию и в таких условиях успешно обрабатывать сигнал DVB-T2, обеспечивая отличный прием.

Первая действующая передача с несколькими PLP была выполнена во время PlugFest, организованным Mediabroadcast в июне 2010 года.

Технические испытания DVB-T2 в Великобритании

BBC и Ofcom работали над реализацией различных изменений, необходимых для модернизации первого мультиплекса в регионе Гранады. В эти работы входили и технические испытания DVB-T2, которые были направлены на проверку стандарта DVB-T2 и определение предпочтительного режима передачи для утверждения в Великобритании. Испытания, которые включали в себя как лабораторные тесты, так и передачи в эфире, также служили и для обеспечения сигналом DVB-T2 разрабатываемого приемного оборудования, которое также необходимо было протестировать.

Для этого передатчик был недавно установлен для тестового вещания в стандарте DVB-T2 с телевизонной башни Хрустального дворца. За этим последовало успешное завершение сквозных лабораторных тестов от источника сигнала к экрану приемника, что стало возможным благодаря тесному сотрудничеству между Arqiva и ENENSYS. ENENSYS предоставил аппаратный модулятор DVB-T2, работающий в режиме реального времени, который был подключен к передающему оборудованию Arqiva.

Эта амбициозная программа будет также поддерживать сообщество производителей DVB-T2, предоставляя тестовое эфирное вещание для тестирования и разработки новых продуктов. Прототипы приемников DVB-T2 в ближайшее время станут доступны и будут готовы для использования в пилотном техническом проекте в течение ближайших недель или месяцев.

Утверждение нового стандарта DVB-T2

Британский телекоммуникационный регулирующий орган Ofcom решил обновить один мультиплекс наземного цифрового телевидения (Multiplex B) для работы сервиса Freeview HD, используя стандарты DVB-T2 и MPEG-4. Модернизированный мультиплекс будет способен доставлять HD сервисы BBC, ITV и Channel4. Ожидается, что со временем будет возможна доставка шести HD сервисов. Первые сервисы были запущены во время цифрового перехода (DSO) 2 декабря 2009 года.

В Финляндии DNA Oy получила лицензию на работу двух мультиплексов DVB-T2. Испытание было начато в декабре 2009 года в городе Лахти. Запуск в Финляндии был выполнен в ноябре 2010 года.

В Швеции начали запуск 1 ноября 2010 года с пятью HD каналами.

В Италии Europa7 запустила семь HD каналов весной 2010 года.

В Замбии ZNBC запустила 10 платных ТВ сервисов 1 июля 2011 года.

В некоторых странах, например, в Австрии, Турции, Сербии, Чехии, Индии, ЮАР, Кении, Шри-Ланке, Сингапуре, Словакии, России, Таиланде, Вьетнаме, Малайзии, Австралии уже утвердили или серьезно рассматривают DVB-T2.

Все мы прекрасно знаем, что мир техники вокруг — цифровой, либо стремится к этому. Цифровое телевещание — далеко не новость, однако если вы не интересовались этим специально, для вас могут быть неожиданными присущие ему технологии.

Цифровой телевизионный сигнал представляет из себя транспортный поток разных версий MPEG (иногда и других кодеков), передаваемый радиосигналом с применением квадратурно-амплитудной модуляции QAM разной степени. Любому связисту эти слова должны быть ясны как день, поэтому приведу лишь гифку из википедии, которая, надеюсь, даст понимание что это такое для тех, кто просто ещё не интересовался:

UPD: В комментариях эта картинка признана некорректной, но, тем не менее, она весьма наглядна. Поэтому оставлю для тех, кто ничего не знает о модуляции и не очень хочет углубляться, но хочет понять что за точки мы тут обсуждаем.

Такая модуляция в том или ином виде используется не только для «телеанахронизма», но и всех, находящихся на пике технологий систем передачи данных. Скорость цифрового потока в «антенном» кабеле составляет сотни мегабит!

Воспользовавшись прибором Deviser DS2400T в режиме отображения параметров цифрового сигнала, мы сможем увидеть как это бывает на самом деле:

В нашей сети пристутсвуют сигналы сразу трёх стандартов: это DVB-T, DVB-T2 и DVB-C. Рассмотрим их по очереди.

Этот стандарт не стал основным в нашей стране, уступив место второй версии, однако он вполне пригоден для использования оператором по той причине, что приёмники DVB-T2 обратно совместимы со стандартом первого поколения, а значит абонент может принять такой сигнал на практически любой цифровой телевизор без дополнительных приставок. Кроме того, предназначенный для передачи по воздуху стандарт (буква T — означает Terrestrial, эфир), обладает столь хорошей помехозащищённостью и избыточностью, что порой работает там, где по каким-то причинам не пролезает аналоговый сигнал.

На экране прибора мы можем наблюдать как строится созвездие 64QAM (стандарт поддерживает QPSK, 16QAM, 64QAM). Видно, что в реальных условиях точки отнюдь не складываются в одну, а приходят с некоторым разлётом. Это нормально до тех пор, пока декодер может определить к какому именно квадрату относится прилетевшая точка, но даже на приведённом изображении видны участки, где они расположены на границе или близко к ней. По этой картине можно быстро «на глаз» определить качество сигнала: при плохой работе усилителя, например, точки располагаются хаотично, а телевизор не может собрать картинку из полученных данных: «пикселит», а то и совсем замирает. Бывают случаи, когда процессор усилителя «забывает» добавить в сигнал одну из составляющих (амплитуду или фазу). В таких случаях на экране прибора можно увидеть круг или кольцо размером во всё поле. Две точки за пределами основного поля являются опорными для приёмника и не несут информации.

В левой части экрана под номером канала мы видим количественные параметры:

Уровень сигнала (P) в тех же дБмкВ, что и для аналога, однако для цифрового сигнала ГОСТ регламентирует уже лишь 50дБмкВ на входе в приёмник. То есть на участках с бо́льшим затуханием «цифра» будет работать лучше аналога.

DVB-T2

Принятый в России стандарт цифрового эфирного вещания так же может быть передан по кабелю. Форма созвездия при первом взгляде может несколько удивить:

Этот стандарт изначально создан для передачи по кабелю (C — Cable) — среде намного стабильнее воздуха, поэтому позволяет использовать более высокую степень модуляции чем DVB-T, а значит и передавать больший объём информации, не используя при этом сложное кодирование.

Тут мы видим созвездие 256QAM. Квадратов стало больше, размер их стал меньше. Вероятность ошибки увеличилась, а значит для передачи такого сигнала нужна более надёжная среда (или более сложное кодирование, как в DVB-T2). Такой сигнал может «рассыпаться» там, где работают аналог и DVB-T/T2, однако он так же имеет запас помехозащищённости и алгоритмы исправления ошибок.

В силу большей вероятности ошибки, параметр MER для 256-QAM нормирован уже в 32дБ.

Счётчик ошибочных бит поднялся ещё на порядок и вычисляет уже один ошибочный бит на миллиард, но даже если их будет сотни миллионов (PRE-BER

E-07-8), то используемый в этом стандарте декодер Рида-Соломона устранит все ошибки.

Источники:

https://wireless-e. ru/wpan/zigbee/nanonet/ieee-802-15-4a/

https://web-shpargalka. ru/dvb-t2-skorost-potoka. php

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: